25 research outputs found

    Supporting the learning of deaf students in higher education: a case study at Sheffield Hallam University

    Get PDF
    This article is an examination of the issues surrounding support for the learning of deaf students in higher education (HE). There are an increasing number of deaf students attending HE institutes, and as such provision of support mechanisms for these students is not only necessary but essential. Deaf students are similar to their hearing peers, in that they will approach their learning and require differing levels of support dependant upon the individual. They will, however, require a different kind of support, which can be technical or human resource based. This article examines the issues that surround supporting deaf students in HE with use of a case study of provision at Sheffield Hallam University (SHU), during the academic year 1994-95. It is evident that by considering the needs of deaf students and making changes to our teaching practices that all students can benefit

    Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE

    Get PDF
    OBJECTIVES: Juvenile-onset systemic lupus erythematosus (jSLE) affects 15–20% of lupus patients. Clinical heterogeneity between racial groups, age groups and individual patients suggests variable pathophysiology. This study aimed to identify highly penetrant damaging mutations in genes associated with SLE/SLE-like disease in a large national cohort (UK JSLE Cohort Study) and compare demographic, clinical and laboratory features in patient sub-cohorts with ‘genetic’ SLE vs remaining SLE patients. METHODS: Based on a sequencing panel designed in 2018, target enrichment and next-generation sequencing were performed in 348 patients to identify damaging gene variants. Findings were integrated with demographic, clinical and treatment related datasets. RESULTS: Damaging gene variants were identified in ∌3.5% of jSLE patients. When compared with the remaining cohort, ‘genetic’ SLE affected younger children and more Black African/Caribbean patients. ‘Genetic’ SLE patients exhibited less organ involvement and damage, and neuropsychiatric involvement developed over time. Less aggressive first line treatment was chosen in ‘genetic’ SLE patients, but more second and third line agents were used. ‘Genetic’ SLE associated with anti-dsDNA antibody positivity at diagnosis and reduced ANA, anti-LA and anti-Sm antibody positivity at last visit. CONCLUSION: Approximately 3.5% of jSLE patients present damaging gene variants associated with younger age at onset, and distinct clinical features. As less commonly observed after treatment induction, in ‘genetic’ SLE, autoantibody positivity may be the result of tissue damage and explain reduced immune complex-mediated renal and haematological involvement. Routine sequencing could allow for patient stratification, risk assessment and target-directed treatment, thereby increasing efficacy and reducing toxicity

    Targeted Next-Generation Sequencing of 117 Routine Clinical Samples Provides Further Insights into the Molecular Landscape of Uveal Melanoma

    Get PDF
    Uveal melanoma (UM) has well-characterised somatic copy number alterations (SCNA) in chromosomes 1, 3, 6 and 8, in addition to mutations in GNAQ, GNA11, CYSLTR2, PLCB4, BAP1, SF3B1 and EIF1AX, most being linked to metastatic-risk. To gain further insight into the molecular landscape of UM, we designed a targeted next-generation sequencing (NGS) panel to detect SCNA and mutations in routine clinical UM samples. We compared hybrid-capture and amplicon-based target enrichment methods and tested a larger cohort of primary UM samples on the best performing panel. UM clinical samples processed either as fresh-frozen, formalin-fixed paraffin embedded (FFPE), small intraocular biopsies or following irradiation were successfully profiled using NGS, with hybrid capture outperforming the PCR-based enrichment methodology. We identified monosomy 3 (M3)-UM that were wild-type for BAP1 but harbored SF3B1 mutations, novel frameshift deletions in SF3B1 and EIF1AX, as well as a PLCB4 mutation outside of the hotspot on exon 20 coinciding with a GNAQ mutation in some UM. We observed samples that harboured mutations in both BAP1 and SF3B1, and SF3B1 and EIF1AX, respectively. Novel mutations were also identified in TTC28, KTN1, CSMD1 and TP53BP1. NGS can simultaneously assess SCNA and mutation data in UM, in a reliable and reproducible way, irrespective of sample type or previous processing. BAP1 and SF3B1 mutations, in addition to 8q copy number, are of added importance when determining UM patient outcome

    A modified sequence capture approach allowing standard and methylation analyses of the same enriched genomic DNA sample

    Get PDF
    Background: Bread wheat has a large complex genome that makes whole genome resequencing costly. Therefore, genome complexity reduction techniques such as sequence capture make re-sequencing cost effective. With a high-quality draft wheat genome now available it is possible to design capture probe sets and to use them to accurately genotype and anchor SNPs to the genome. Furthermore, in addition to genetic variation, epigenetic variation provides a source of natural variation contributing to changes in gene expression and phenotype that can be profiled at the base pair level using sequence capture coupled with bisulphite treatment. Here, we present a new 12 Mbp wheat capture probe set, that allows both the profiling of genotype and methylation from the same DNA sample. Furthermore, we present a method, based on Agilent SureSelect Methyl-Seq, that will use a single capture assay as a starting point to allow both DNA sequencing and methyl-seq. Results: Our method uses a single capture assay that is sequentially split and used for both DNA sequencing and methyl-seq. The resultant genotype and epi-type data is highly comparable in terms of coverage and SNP/methylation site identification to that generated from separate captures for DNA sequencing and methyl-seq. Furthermore, by defining SNP frequencies in a diverse landrace from the Watkins collection we highlight the importance of having genotype data to prevent false positive methylation calls. Finally, we present the design of a new 12 Mbp wheat capture and demonstrate its successful application to re-sequence wheat. Conclusions: We present a cost-effective method for performing both DNA sequencing and methyl-seq from a single capture reaction thus reducing reagent costs, sample preparation time and DNA requirements for these complementary analyses

    Life without Oxygen: Gene Regulatory Responses of the Crucian Carp (Carassius carassius) Heart Subjected to Chronic Anoxia

    Get PDF
    Crucian carp are unusual among vertebrates in surviving extended periods in the complete absence of molecular oxygen. During this time cardiac output is maintained though these mechanisms are not well understood. Using a high-density cDNA microarray, we have defined the genome-wide gene expression responses of cardiac tissue after exposing the fish at two temperatures (8 and 13°C) to one and seven days of anoxia, followed by seven days after restoration to normoxia. At 8°C, using a false discovery rate of 5%, neither anoxia nor re-oxygenation elicited appreciable changes in gene expression. By contrast, at 13°C, 777 unique genes responded strongly. Up-regulated genes included those involved in protein turnover, the pentose phosphate pathway and cell morphogenesis while down-regulated gene categories included RNA splicing and transcription. Most genes were affected between one and seven days of anoxia, indicating gene regulation over the medium term but with few early response genes. Re-oxygenation for 7 days was sufficient to completely reverse these responses. Glycolysis displayed more complex responses with anoxia up-regulated transcripts for the key regulatory enzymes, hexokinase and phosphofructokinase, but with down-regulation of most of the non-regulatory genes. This complex pattern of responses in genomic transcription patterns indicates divergent cardiac responses to anoxia, with the transcriptionally driven reprogramming of cardiac function seen at 13°C being largely completed at 8°C
    corecore